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Abstract
In reverse Monte Carlo modelling, experimental information (i.e. diffraction
data) and a priori information (i.e. constraints introduced in the algorithm)
are partly redundant. The extent of this redundancy for (‘fixed neighbour’)
constraints determining the molecular geometry is studied systematically in
the typical case of liquid CCl4. Results indicate that data with a very limited
momentum transfer range are sufficient for deriving the intermolecular structure
of such disordered systems when (intra)molecular geometry and intermolecular
distances of closest approach are introduced by the appropriate algorithmic
constraints.

1. Introduction

Reverse Monte Carlo (RMC) modelling is a computing method for deriving the structure of
amorphous/disordered materials from diffraction data [1]. It has been successfully applied to
a wide range of materials, from molecular liquids [2–4] to molten salts [5] and glasses [6].
(For a detailed description and more references, see the reviews that appear in this Special
Issue [7, 8].)

The input (in part) and the output of an RMC simulation consist of a set of atoms and their
positions, virtually put into a ‘box’ at the density corresponding to that of the material under
study. The set of all conceivable such spatial configurations defines the parameter space upon
which the RMC method operates. For a given configuration, the set of interatomic distances
can be computed and binned into histograms in order to derive estimates of the partial pair
correlation functions (PPCFs). These estimated PPCFs are sine-Fourier transformed to yield
the partial structure factors (PSFs). The PSFs are then linearly combined, weighted according
to the different scattering factors and concentration of every atomic species involved, to finally
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give the ‘calculated’ diffracted intensity Scalc(Q). The discrepancies between calculated and
experimental data are measured by the usual χ2 quantity:

χ2 =
∑

i

[Sexpt(Qi ) − Scalc(Qi )]2

σ 2
, (1)

where the sum is performed over all available data points {Qi , S(Qi )}, and possibly for several
data sets.

The RMC technique is based on the Metropolis algorithm [9]: it is a random walk in the
parameter space driven by the agreement between calculated and experimental data. Each step
of the walk consists of a move of one atom of the configuration. Such a move modifies the
distances histograms and thereby induces a change in the χ2. The move is accepted if the
χ2 decreases. The key of the Metropolis algorithm is, however, that if, on the contrary, the
agreement between calculated and experimental data is decreased (i.e. the χ2 increases), the
move is still acceptable with the probability exp[(χ2

old − χ2
new)/2]. This random acceptance

ensures that the algorithm does not get trapped in a local ‘χ2 well’. That is, it prevents the
algorithm from providing one ‘unique’ solution. The RMC method, indeed, yields a large
number of possible solutions whose χ2 value fluctuates around a common equilibrium value.

This lack of uniqueness (which has been the source of criticism of the RMC method) does
not discredit the whole method, but it clearly indicates how to use RMC results. Conclusions
from RMC simulations should be based on collective common features of the solutions, not
on statistically insignificant, let alone unique, features of a resulting configuration.

The convergence of the Metropolis algorithm is based on statistical mechanics arguments,
and is controlled by Boltzmann-like factors; therefore it yields a configuration with ‘maximum
disorder’, which can correspond to unphysical solutions of the problem. In most cases, it is
known that to some extent there is some order in the structure. In order to take into account this
a priori information, constraints are added in the algorithm. Distances of closest approaches
between atoms of a given type are a typical example of a priori physical knowledge introduced
in the algorithm.

Diffraction data are not able to reveal whether there are molecules (i.e. fixed collections
of atoms) in the sample under study: therefore, the molecular structure is usually a piece of
information that needs to be added to RMC calculations as a priori physical knowledge. At
present, most frequently flexible molecules are used (for a discussion on flexible versus rigid
molecules, see [2]). Defining the geometry of flexible molecules is possible by means of the
so-called ‘fixed neighbour constraints’ (FNCs [10]). FNCs work by fixing the neighbouring
atoms (via their serial numbers in the configuration) around each particle. The lengths of the
bonds defined in this way are allowed to vary within some tolerance. The extent of this tolerance
will be of great importance throughout this study. Additional constraints such as coordination
constraints and interatomic potentials can also be introduced [11] by adding some components
to the χ2 term that governs the acceptance/rejection of the random move.

These different a priori information sources, i.e. data and constraints, can be expected
to be, to some extent, redundant. The present work is an attempt to identify and study some
of these redundancies. It is practically impossible to investigate such behaviour of the RMC
algorithm without being specific about given materials: the following results are based on
simulations of liquid CCl4, which is one of the most studied molecular liquids, using neutron
diffraction data.

Previous work [12] indicates that the medium and long ranges of Q are redundant for
cases of some simple liquids and covalent and metallic glasses, and that distances of closest
approach have no significant effects. In the present study, we focus on the possible redundant
information content of the FNCs and of the high Q end of the diffraction data range of Q.
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Table 1. The data range and FNCs for the first nine runs with CCl4.

FNC (Å) ⇒ C–Cl ∈ [1.71, 1.85] C–Cl ∈ [1.69, 2.00] C–Cl ∈ [1.69, 2.19]
Q range (Å−1) ⇓ Cl–Cl ∈ [2.7, 3.1] Cl–Cl ∈ [2.7, 3.3] Cl–Cl ∈ [2.7, 3.5]

[0.55, 9.15] A1 B1 C1
[0.55, 6.9] A2 B2 C2
[0.55, 4.975] A3 B3 C3

Table 2. Common run parameters for the first nine runs with CCl4.

Number of atoms 10 240 (2048 molecules)
Density 0.0319 Å−3

Cubic cell size, half-edge 34.235 Å
r spacing in distance histograms 0.1 Å
Move amplitude for all atoms 0.1 Å
Distances of closest approach:

C–C 3.3 Å
C–Cl 1.69 Å
Cl–Cl 2.7 Å

σ (data standard deviation) 0.001

It should be remembered that FNCs define the (intra)molecular structure; therefore, it is the
intermolecular correlations that will be investigated as a function of the FNCs and the Qmax

value of the data modelled.

2. RMC simulation runs with CCl4

Liquid CCl4 provides a good example. It is a simple system with weak intermolecular
interactions, for which relevant valuable information can be retrieved from diffraction
measurements (see e.g. [2]). Besides this, its tetrahedral shape makes it particularly well
suited for description with FNCs. The neutron diffraction data used here were originally taken
at the Budapest Research Reactor for a previous study [3].

The FNCs define the molecular geometry (via the intramolecular distances between
specific atoms of the configuration); one can thus expect them to also strongly constrain
the high Q part of the diffraction data (which part, for disordered materials, is dominated by
short range correlations).

To check possible redundancies or competing effects between the high Q range and FNCs,
several RMC runs were performed with constraints given by a 3 FNC × 3Q range constraints
grid (table 1) defined as follows: the original neutron diffraction data were measured up to
9.15 Å−1 (tabulated in 100 points), from which two restricted data sets were subsequently built
by chopping off the high Q end at 6.9 Å−1 (85 points) and 4.975 Å−1 (70 points). Similarly
three different sets of FNCs were defined from ‘strict’ to ‘loose’, allowing the shape of the
CCl4 molecule to depart significantly from the ideal tetrahedron.

Note that since atoms are moved one by one in the basic step of the RMC random walk, the
algorithm requires the molecule to be flexible to a certain extent. There is an obvious trade-off
between the move amplitude and the allowed deviation from some ideal molecular geometry.
It is, however, possible to use the RMC scheme for rigid molecules by defining the random
step as a custom displacement of the whole molecule [7].

The otherwise common parameters for the nine RMC runs appear in table 2.
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Figure 1. Modelled versus total structure factors. Bottom: runs A1, B1 and C1 (Q range up
to 9.15 Å−1). Middle (vertical shift of 0.25): runs A2, B2 and C2 (Q cut-off at 6.9 Å−1). Top
(vertical shift of 0.5): runs A3, B3 and C3 (Q cut-off at 4.975 Å−1). The TSFs can be recovered
beyond the cut-off, although some slight but sharp departure from the experimental curve can be
seen (at the detailed level) at the cut-off.

It must be noted that in the RMC method, the σ value, which enters the definition of the
χ2 and which is in principle defined by experimental uncertainties, is in fact one adjustable
parameter that controls the fit quality and possibly weights the different data sets. For example,
a previous attempt with a larger value of σ (0.005) failed to produce good fits to the data.

Each calculation was started from an identical initial disordered configuration. The
duration of one run was typically 20 or 24 h (for one processor, on a two-processor 700 MHz
PC running under Linux, with the RMC + + implementation of the RMC method [7]). The
number of accepted moves per atom varied between 170 and 340 and, in all cases, convergence
was ensured by the lack of further evolution of the χ2 parameter.

The different RMC outputs can be visualized by examining the total structure factors
(TSF) modelled, the resulting partial structure factors, as well as the PPCFs. We must stress
however that the configuration contains much more information than just the PPCFs, and that
additional tools (such as bond angle distributions) are easily accessible.

Before going into detailed discussions, it should be mentioned that in most of the cases
studied here, the FNCs will dominate sharp features of the PPCFs (which appear in the r ranges
corresponding to intramolecular distances) since the widths of the FNCs are smaller than, or
comparable to, the peak broadening due to Qmax: the data will not be able to make sharp
features sharper than the FNCs. However, since it is the intermolecular correlations that are of
interest in a (n RMC method aided) diffraction study, the above limitation is not particularly
important from the point of view of the current study.

2.1. Information in Q space

The goodness of fit of the modelling appears in figure 1.
Since the agreement between calculated and experimental data is a requirement of the

RMC method, the fits are rather good. Noticeably, the features of the TSF are recovered
beyond the cut-offs, although detailed examination reveals a slight but sharp departure of the
‘calculated’ data from the experimental curve where the Q range has been shortened.

Figure 1 indicates clearly that the information content of the high Q part of the
structure factor is somehow redundant, with the information content of its lower Q part
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Figure 2. Partial structure factors from the nine RMC runs. (a): C–C; (b): C–Cl; (c): Cl–Cl. All
sets are quite homogeneous; only the Cl–Cl PSF exhibits noticeable changes due to the different
constraints applied.

combined with the intrinsic a priori information of the model (i.e. FNCs and very basic
modelling assumptions). Otherwise, the departures of the calculated structure factors from the
experimental data would certainly be much larger in the chopped-off region.

One can ask whether the slight changes observed when experimental and/or algorithmic
constraints are loosened for the total structure factor are equally shared by the partial structure
factors or whether, on the contrary, the loosening affects the partial structure factors in different
ways. Figure 2 shows the three partials for all sets. As can be expected from the small variations
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between the different total structure factors, partial structure factors (PSFs) do not exhibit large
changes, either. Interestingly, the different cut-offs in the Q range visible in the TSF seem to
originate only in the Cl–Cl partial. In other words, the suppressed information contained in
the high Q range mainly concerns the Cl–Cl distance. This is in agreement with the fact that,
in general, the high Q part of the structure factor describes intramolecular features, of which
the Cl–Cl distance is the most flexible. (Note also that the Cl–Cl partial has the largest weight
in the total neutron structure factor and, therefore, any effect can be best seen for this function.
However, this cannot be taken as a full explanation since the C–Cl partial, which also has a
significant weight, is totally unaffected.)

2.2. Information in r space

Since the pair correlation functions g(r) (and the different partials) are related to the structure
factor by a Fourier-transformation-likeprocess, it is possible that the loss of information due to
the suppression of the high end of the Q range in the structure factor, which is only marginally
visible in Q space, might appear in r space.

It must be stressed that partial functions g(r) are always calculated from the configuration
obtained by the RMC method and NOT by inverse Fourier transformation of the S(Q). In this
way, we remain free from the usual problems occurring when applying Fourier transforms to
data limited in Q range that plague direct methods of inversion.

Figure 3 shows the three partials, which, by and large, are almost identical.
No feature distinguishes the different C–C PPCFs even on a detailed scale. This means

that all the information needed to recover this PPCF is contained in the loosest constraints
combined with experimental data over the shortest Q range. In other words, the distribution
of the molecular centres is well defined by the data, and is not affected by the rigidity of the
molecular geometry.

The C–Cl partials can be distinguished only by the details of the intramolecular peak
which, as a result of loosening FNCs, is broadened slightly. The r spacing was set to
0.1 Å and at this level no additional information can be expected from the data for the Q
ranges considered. Therefore, the widening of the intramolecular features is just the effect
of the release of the molecular geometrical constraints, the RMC method yielding the ‘most
disordered’ configuration given the constraints.

The Cl–Cl partials can also be separated at the detailed level only (figure 4). When the
molecular geometry is rigid, the intramolecular Cl–Cl peak is clearly separated from the first
intermolecular peak (at ∼3.8 Å). Loosening the FNCs allows the two contributions to become
mixed, and it becomes impossible to disentangle them clearly (although the small maximum
at 3.8 Å never disappears).

In general, the g(r) has the sharpest features for the full extent of the data and the tightest
constraints. Suppressing the high Q bits of the S(Q)has a minor effect, unless it is accompanied
by a release of the FNCs, which appear to be the driving features.

2.3. Additional RMC runs

In a second series of calculations, we tried to identify the structural information specifically
contained in the upper part of the Q region. For this purpose, we produced a set of artificial data
extending to a (very) large maximum Q value (up to 40 Å−1), from the resulting configuration
of run A1 (i.e. obtained with the strictest constraints and the full set of experimental data).
A series of RMC runs was subsequently performed using the loosest FNCs defined previously,
and again suppressing progressively the high end of the S(Q) range. Two additional simulations
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(a)

(b)

(c)

Figure 3. Partial pair correlation functions, from the nine sets of RMC runs. (a): C–C; (b): C–Cl;
(c) Cl–Cl. On a large scale they are all equivalent. Detailed examination is required in order to
separate the different curves.

without data, but with the loosest and the tightest set of FNCs used previously, were also made.
Table 3 summarizes the different input of this second series.

On the whole, this second set of simulations confirms results described in the previous
section: the information gained by extending the Q range in the S(Q) data is only marginal.
This is particularly true in the region of large values of the maximum Q (say, beyond about
15 Å).

The different C–C PPCFs cannot be distinguished (and, therefore, they are not shown).
The different Cl–Cl PPCFs are also very close to one another; only the one obtained with the
cut-off at 10 Å−1 can be separated from the others (see figure 5(b)). A similar conclusion can
be drawn concerning the C–Cl PPCF (figure 5(a)) but it is even less visible.
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Figure 4. A detailed view of the Cl–Cl partial pair correlation function. At this particular point (just
after the intramolecular peak), tightening the FNCs allows one to disentangle the intramolecular
and the intermolecular contributions to the 3.8 Å ‘bump’.

Table 3. Input for the second series of RMC runs with CCl4: ‘loose’ FNCs for runs with data and
‘strict’ and ‘loose’ FNCs for ‘hard sphere’ runs (without data).

Run Q range (Å−1) C–Cl FNC (Å−1) Cl–Cl FNC (Å−1) �r step (Å) Number of points

D1 [0.55, 40] [1.69, 2.19] [2.7, 3.5] 0.031 409
D2 [0.55, 30] [1.69, 2.19] [2.7, 3.5] 0.041 309
D3 [0.55, 25] [1.69, 2.19] [2.7, 3.5] 0.05 259
D4 [0.55, 20] [1.69, 2.19] [2.7, 3.5] 0.062 209
D5 [0.55, 15] [1.69, 2.19] [2.7, 3.5] 0.083 159
D6 [0.55, 10] [1.69, 2.19] [2.7, 3.5] 0.1 109
HS0 No data [1.71, 1.85] Å [2.7, 3.1] 0.1 0
HS1 No data [1.69, 2.19] Å [2.7, 3.5] 0.1 0

The additional information contained in the higher Q extensions of the structure factor
is manifested in the sharpness of the functions g(r). Since the sharpest features are the
intramolecular peaks, that is where all the supplementary data are transposed in r space.
No other significant change in the PPCFs was found; that is, intermolecular characteristics
(corresponding to orientational correlations) were not affected at all.

Finally, since most of the relevant information contained in the S(Q), not redundant with
the RMC assumptions and constraints, seems to be encompassed in the shortest Q range
considered in this study (i.e. below 4.7 Å−1), we made attempts to run RMC simulations
without data (applying the FNC constraints only). Results indicate that the density constraints
define the C–C distance (not shown). For the C–Cl partial, the main intermolecular features
are roughly reproduced with constraints only. In contrast, for the Cl–Cl partial the data are
needed to obtain the main features of the PPCF at medium range.

3. Summary and conclusion

The results described above confirm earlier findings [12] (obtained with distances of closest
approach only) and indicate that diffraction data of limited momentum transfer range can be
used to derive the structure of disordered materials with RMC modelling.

The high Q parts of the structure factor correspond to sharp features in r space. For
disordered materials, these features appear at low r values only (at medium r range and beyond,
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(a)

(b)

Figure 5. Detailed views of the C–Cl (a) and Cl–Cl (b) PPCFs. The decrease of the sharpness of
the intramolecular peak is the only visible feature that derives from the variation of the Q range of
the structure factor in the input of the RMC simulation.

smoothing due to disorder becomes prominent). For molecular systems, this low r region
contains—mostly—intramolecular distances, which, in a reverse Monte Carlo calculation, are
determined by the FNCs. Consequently, high Q information is not essential for deriving
structural information at ‘intermediate’ (intermolecular) ranges. We deliberately avoid giving
numbers for distances corresponding to ‘short’, ‘intermediate’ and ‘long’ range, since they
would depend on the materials considered.

Furthermore, at ‘short’ r range (corresponding roughly to molecular size), RMC
constraints such as distances of closest approach and FNCs provide essential pieces of
information competing with the high Q part of the diffraction data (or replacing it, if it
is not available). However, due to the structure of the algorithm, constraints are given an
overwhelming weight. High momentum transfer may nevertheless indicate very fine structure,
if the Q range is wide enough to correspond to r resolution smaller that the distance ranges
defined by FNCs (e.g. the detailed shape of the intramolecular peak). The relevance of such
details, however, remains to be assessed, as are the uncertainties in the RMC modelling output.
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In the interesting cases where the molecular structure makes an important contribution
to the definition of intermediate range order, RMC constraints and diffraction data are
competing/redundant. On one hand, this can be used to disentangle intermolecular from
intramolecular features in the functions g(r); it can also help to detect systematic errors in
diffraction data, or inconsistencies between different data sets. But, on the other hand, it must
be kept in mind that the implementation of some RMC constraints (such as FNCs, coordination
constraints and potentials) is partly arbitrary. Consequently, all RMC results must always be
given with the set of applied constraints.

Finally, on the basis of the findings of the current study, it must be stressed again that the
RMC method must never be used as a black box and that, eventually, its results must always
be scrutinized and validated or discarded on the basis of physics or chemistry arguments.
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